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Abstract

The well-separated pair decomposition (WSPD) of a set of points offers great in-
sight to the geometric nature of this information. This decomposition of points
enables efficient approximations to computationally expensive problems such
as the Travelling Salesman Problem (TSP). We investigate the use of various
polynomial-time approximate solutions to the TSP on top of the well-separated
decomposition of points in Euclidean space. Based on empirical results we iden-
tify settings in which specific algorithms may lend themselves well, and propose
metrics by which we decide on an approximation algorithm.

1 Introduction

The Travelling Salesman Problem (TSP) [23] asks, given a set of points in a d-dimensional space
Rd, the shortest path that visits every city while also starting and ending at the same point. This
is a problem that occurs in many real-world logistics and planning scenarios, such as vehicle route
planning [12], manufacturing microchips [10], machine scheduling [22], etc. If a human were to
look at a map and attempt to create such a path, they may come close to the optimal solution quickly.
Computationally however, this remains an incredibly difficult optimization problem to solve. In fact,
the TSP is said to be NP-hard, meaning it cannot be solved in polynomial time.

To find the optimal solution for a set of n points, one needs to enumerate all possible paths and pick
the one with lowest cost resulting a computational complexity of O(n!). Researchers have devised
a host of approximate algorithms that aim to find a solution that is very close to the optimal solution
in polynomial time. Yet, many of these solutions do not account for potential geometric insights one
may find when looking at these points and serve as a monolithic solution to the problem. Instead, can
we use specific heuristics or properties present in our data to adaptively pick a suitable polynomial-
time approximation?

To better understand the geometry of the travelling salesman problem, we look to the well-separated
pair decomposition [6] of our set of points. This decomposition allows us to break down the prob-
lem space into meaningful sub-problems, and attempt to solve the problem locally on each well-
separated pair before looking at the whole picture. Well-separated pairs have offered insight into
approximately solving other well-known computationally expensive problems such as approximat-
ing minimum spanning trees [16] and shortest paths between any points [26].

In this work, we investigate the use of the well-separated pair decomposition to approximately solve
the travelling salesman problem. In particular, we leverage geometric properties of our data on a
Euclidean plane to support existing polynomial-time approximations of the TSP. We compare these
approximations to those that do not leverage such information and explore results on small sets of
data.



2 Definitions and Related Works

2.1 Well-Separated Pair Decomposition

In this subsection we go over definitions, computation, and applications of the Well-Separated Pair
Decomposition of a set of points.

2.1.1 Definitions

To understand the Well-Separated Pair Decomposition (WSPD), we must first understand what it
means for two sets to be “Well Separated” [6]:

Definition 1: Let two finite sets of points A and B be subsets of S ⊂ Rd and let s > 0 be a real
number. The sets A and B are well separated with respect to s given there are two disjoint balls CA

and CB of radius r such that:

1. CA and CB have the same radius r

2. CA contains all points in A

3. CB contains all points in B

4. CA is at least s times the distance r away from CB

The real number s is called the separation ratio.

This can be seen in Figure 1 below.

Figure 1: Example of Well-Separated Pairs in the R2 space. All points in set A and B are contained
in circles with radius r and are at least of distance sr away from each other. The parameter s is
typically a predetermined parameter.

Building off of this, the Well-Separated Pair Decomposition (WSPD) can be defined as follows:

Definition 2: Let S ⊂ Rd be a set of n points, and let s > 0 be a real number. A WSPD of S, with
respect to s, is a sequence {A1, B1}, {A2, B2}, . . . , {Am, Bm} of pairs of non-empty subsets of S
for some integer m, such that:

1. for each i ∈ [m], Ai and Bi are well-separated with respect to s

2. for any two distinct points p, q ∈ S, there is exactly one index i ∈ [m], such that:

(a) p ∈ Ai and q ∈ Bi, or
(b) p ∈ Bi and q ∈ Ai

In essence, this decomposition of points generates unordered pairs that act as a cover of all our n
points in S such that each pair is well-separated, as defined in Definition 1.
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2.1.2 Generating the Well-Separated Pair Decomposition

In order to generate well-separated pairs we first build a point region quadtree (PR-quadtree) to store
our input data points. This generation works by recursively subdividing our space into four square
quadrants as we add points to the data structure. We split on a point if the bucket it is in has more
points than a user defined limit. An example of a final PR-quadtree with bucket limit of 1 can be
seen as follows:

Figure 2: Example of a PR-quadtree with 48 points and a bucket limit of 1.

Next we detail how we compute the well-separated pair decomposition. At a high level, we compare
pairs of non-empty nodes and check if they can be decomposed into well-separated pairs with a
separation factor of s. If so, we store these pairs into our WSPD dictionary. Otherwise, we identify
the larger cell and subdivide this cell into children and investigate each child recursively with the
smaller cell. Clearly, this algorithms runs proportional to the number of blocks and is proven to
have a space complexity of O(n). An example of a WSPD of a more simple case with n = 9 and a
separation factor of s = 1 can be seen in the following figure:

Figure 3: Example of the WSPD of 9 points with a separation factor of 1

This powerful geometric decomposition of points can be done in O(nlog(n)) time1 and has lead to
many developments in polynomial-time approximate algorithms for difficult problems.

1https://www.cs.umd.edu/class/spring2020/cmsc754/Lects/lect16-wspd.pdf
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2.1.3 Applications of Well-Separated Pair Decomposition

The WSPD has been used in various settings to optimally solve problems such as the closest pair
problem, k closest pairs problem, all-nearest neighbors problem [8], approximate minimum span-
ning tree problem[16; 7], and approximate shortest paths [26]. For the application to k-nearest
neighbors, Callahan et. al are able to identify this in O(kn) time by using the WSPD to prune non-
useful sets of nodes [8]. Of particular interest is the use of WSPD in approximating the minimum
spanning tree of a set of points by Li et. al. Here, the use of WSPs enables data storage optimizations
as well as algorithmic optimizations by pruning options not included by the WSPD.

2.2 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) [25; 23] is an age-old combinatorial optimization problem
that has a variety of real-world applications. A simple description of the problem is as follows:

Definition 3: Given n cities out of a set of cities C with distances between two cities d(c, c′) for
c ∈ C, where the triangle inequality holds, the goal is to find a tour of the cities that minimizes a
tour length. A tour of c1, c2, ..., cn has a total length of

∑n−1
i=1 d(ci, ci+1) + d(cn, c1).

2.2.1 Solving the TSP

To find the optimal solution, one must check every possible combination of paths, which can result
in a complexity of O(n!). This is a well studied problem however, and as such, there are a host
of algorithms that approximately solve it in a more reasonable time. A general breakdown of how
some algorithms aim to solve it are as follows:

1. Heuristic-Based Approximation

(a) Nearest Neighbor [4; 24]
(b) Love & Norback [20]
(c) Lin-Kernighan (3-opt) [17]
(d) Minimum Spanning Tree + shortcuts (Christofides) [15]
(e) Divide & Conquer [9]

2. Enumeration

(a) Cutting Planes [21]
(b) Branch & Bound [2]
(c) Dynamic Programming [3]

3. Learning Based

(a) Deep Learning [18; 14]
(b) Genetic Algorithms [5]

Heuristic Approximation and Enumeration based solutions have been studied extensively and are
used in similar problems such as shortest-path finding. These approximation algorithms run in
polynomial time and using polynomial storage [19]. Other modern techniques form a blend of these
approaches to approximate a more optimal solution while maintaining low computational costs.

While the focus of this paper looks at heuristic and enumeration based solutions to the TSP, we
acknowledge the use of learning based solutions, such as using graph convolutional networks [14]
and and Ant Colony Optimization [13] as powerful and efficient methods for TSP problems.

2.3 Datasets

In this work, we use data generated by TSP instances found in VLSI data 2 and Country data 3. To
properly evaluate TSP approximation algorithms, these datasets know the optimal solution OPT .

2https://www.math.uwaterloo.ca/tsp/vlsi/index.html
3https://www.math.uwaterloo.ca/tsp/world/countries.html
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3 Approximation Algorithms

In this section we take a closer look at existing algorithms for the TSP, and the potential use of
WSPD to further augment these. We can classify an approximate algorithm as α − OPT if it is at
most α times the optimal solution OPT in worst case.

3.1 Brute Force with WSP Pruning

The Brute Force method to solve the TSP looks to enumerate all (n − 1)! possible paths and picks
the one with lowest cost. The application of WSPD here is to prune paths that are clearly redundant
by looking at edges between well-separated pairs. We still build permutations for all possible paths
for each point that is not well separated, and then connect the group by an edge to the remaining
graph. After pruning undesirable choices, we pick the minimum cost permutation. At a high level
the steps for this are as follows:

1. Form a well-separated dictionary for each point

2. For each point p from point set P :

(a) Identify set S, all of which p is well-separated from
(b) Add path permutations for p with all d ∈ P \S that have not yet been visited (pruning

“inefficient” paths)
(c) Add a point s ∈ S to path (well separated from points in above step)
(d) Do the same process with point s until all points have been visited

3. Evaluate all path permutations and return minimum cost path

What this does is similar to other heuristic-based approaches, where we are able to break down the
problem space into smaller sub-problems, and solve each individually and cheaply join them to each
other. However, in situations where each point is well-separated from the majority of the rest, it is
clear that the algorithm becomes exponential in the worst case. This pruning method still has a time
complexity of O(n!). However, we still use this as a baseline metric to compare other approximate
strategies. Results for this can be seen in Table 1.

3.2 Nearest Neighbor Heuristic

The nearest neighbor heuristic approximation [4; 24] is a greedy algorithm that, given a starting
point, creates paths by picking closest point to it as the next step. This is a simple algorithm to im-
plement yet naı̈ve in nature, as it may leave a neighborhood of points by greedily selecting a nearest
neighbor. The algorithm on its own has a complexity of O(n2). This heuristic-based approach has
shown to result in an approximation of being within 25% of the Held-Karp lower bound [19].

To prevent the algorithm from erroneously leaving a neighborhood of our points, we can use the
WSPD to identify neighborhoods of points that we want to first travel through, before leaving the
neighborhood. As such, we can apply a constraint on the nearest neighbor heuristic to first exhaust
all points in our WSP set before continuing. At a high level, this algorithm is as follows:

1. Form a well-separated pair decomposition of all points P

2. For each set S in our decomposition (sub-problems)

(a) If |S| < t, for some threshold t, identify brute-force solution to points in S, otherwise
use nearest neighbor heuristic

(b) Identify entry and exit points to connect to other sub-problems

3. Connect each sub-problem to form a tour as our solution

Connecting sub-problems to each other is done by looking at the minimum projection of points to
a line connecting the sub-problems. We identify entry- and exit-points for each sub-problem in this
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manner. Identifying the optimal connections is still the TSP, and we could solve this recursively. For
simplicity, we do so in a brute-force manner in the current implementation of the algorithm.

This approximation strategy has a time complexity of O(m2) for sub-problems of size m > t and
complexity of O(t!) for those with size smaller than our threshold. We can pick such a threshold to
be small such that the exponential complexity that arises from this is low. Letting k be the number of
sub-problems, connecting these has a complexity of O(k!). Our overall complexity of the algorithm
is thus O(k(m2)+k!). Guarantees on optimality are yet to be analyzed. Results for this can be seen
in Table 1 denoted as “NN (WSP)”.

3.3 Minimum Spanning Tree (Christofides

The Christofides algorithm, also known as the 3/2-OPT algorithm, is a powerful approximation of
the solution for the TSP by using a minimum spanning tree as its basis [11]. The original algorithm
has a worst-case complexity of O(n3) [11] and results in a 3/2-OPT approximation of the solution
given an optimal minimum spanning tree.

The use of WSPD here is in approximating the minimum spanning tree of our points, and using this
to approximate the solution to the TSP. As such, the algorithm is as follows:

1. Compute minimum spanning tree G of our points P

2. Compute a minimum-cost matching M on the set of odd-degree vertices of the MST G

3. Add M to G to form an Eulerian graph

4. Find an Eulerian tour T of our Eulerian Graph

5. Convert T into a Hamiltonian tour H by travelling the tour T and skip vertices that were
already visited

6. Return our tour H to solve the TSP

The computational complexity of approximating the MST is O(nlogn) [16], and the Christofides
algorithm, as mentioned, has a complexity of O(n3). As such, the resulting complexity is still
O(n3), which is still much better than the brute-force solution. We do not have an analysis on
optimality here, but I suspect, given some error ϵ on the MST, that the algorithm is 3ϵ/2-OPT.
Results for this can be seen in Table 1.

3.4 Notes on Grid Snapping

When constructing our quadtree, if points are very close to each other (i.e. d(p1, p2) < 1) we must
continuously subdivide our space until they are split. This can become expensive from a time and
space perspective. One solution to this would be to snap points to integers. When we snap points to
a grid in the 2-D plane, a vertex is moved by at most

√
2/2 (diagonal in a 1x1 unit). However, an

edge length is changed by at most 2
√
2/2, i.e.

√
2 as each end point has moved by at most

√
2/2.

Given that T is some solution to the original problem and Ts is the same solution using snapped
points, we clearly see that Ts ≤ T +n

√
n [1]. In some cases, where the distances are very long, the

error term of n
√
n may be negligible, but this would be a case-by-case scenario where one would

use this.

4 Results

In this section we go over some empirical results of using the aforementioned algorithms and com-
pare tour lengths to the optimal solution. We also compare the heuristic-based algorithm to a non-
WSP method to observe benefits gained from using the WSPD. The other methods are the Nearest
Neighbor method without using the WSPD, Divide & Conquer method, and Genetic algorithm.
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Table 1 shows tour lengths for 4 different datasets using the heuristic algorithms that are described
in section 3, as well as some additional approximate algorithms. The number in the dataset name
indicates the number of points in it. the “att48”, “uy734” and “pr1002” datasets are geographic
datasets, while the “xqf131” is on VLSI data. The numbers in the cell are the tour length followed
by the approximation factor of the optimal solution. We also highlight the best approximation length
for each dataset.

Table 1: Tour Lengths for Approximation Algorithms with Approximation Factor

Dataset Optimal NN (WSP) NN Christofides Divide & Conquer Genetic
att48 33,523 37,718 (+13%) 40,526 (+21%) 38,777 (+16%) 36,957 (+10%) 36,385 (+9%)

xqf131 564 684 (+21%) 709 (+26%) 923 (+64%) 729 (+29%) 677 (+20%)
uy734 79,114 94,430 (+19%) 102,594 (+30%) 270,743 (+242%) 108,769 (+37%) 102,273 (+29%)
pr1002 259,045 328,148 (+27%) 315,596 (+22%) 519,286 (+100%) 364,564 (+41%) 315,596 (+22%)

5 Discussion

5.1 Algorithms using WSP

Strictly comparing approximation algorithms that use WSPD, it seems like the nearest neighbor
heuristic performs better than the Christofides algorithm, likely due to the propagation of error from
approximating the MST. However, the deviation of Christofides from the NN algorithm seems to
be very narrow on the dataset with 48 points. Perhaps on smaller sub-problems, the Christofides
algorithm may perform better.

The Christofides algorithm seems to have very large deviations from the optimal solution if one
were to look at the “uy734” and “pr1002” datasets, which have a greater number of points than the
other two. Reconciling this with the distribution of the points, it seems like the points are somewhat
uniformly distributed, with a few clusters of points. Perhaps using other heuristics to describe the
data may be useful to classify and further investigate types of data on which this approximation
method is not as efficient.

5.2 Comparison of Nearest Neighbor Heuristic

We implement the nearest-neighbor heuristic approximation to the TSP using the WSPD of our
points, and without. We find that in the “uy734” dataset our algorithm using the WSPD outperforms
the general NN algorithm by 21%, but fails to do so on the “pr1002” dataset with a 5% difference.
Further analysis on the data would be needed to better understand why the algorithms have differing
results, but it may be due to luck using the non-WSP algorithm or that our WSP algorithm requires
further fine-tuning of parameters. It does seem like, up until the graph with 1002 nodes, that the
WSP decomposition leads to better approximations of the solution than the non-WSP method. This
may be an indicator of how variance in points may lead to challenges in using the WSPD.

5.3 Other performance comparisons

We find that the genetic algorithm outperforms all other algorithms on the smaller datasets “att48”
and “xqf131”. They marginally beat the NN algorithm using WSP, however, further tuning of both
algorithms may affect the final result. This method falls off on larger datasets though, and after 1200
iterations on the baseline path (NN no WSP), we do not see major improvements.

The divide & conquer method, which recursively subdivides the points in a naı̈ve manner and opti-
mizes the merge of paths, seems to perform worse, on average, than heuristic-based methods. This
validates the thought that using geometry to decompose our point-space is a better than trying to
evenly divide the point space and joining points that way.
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6 Future Work

There is still much work to be done to better understand how we can leverage the WSPD of our points
for algorithmic optimizations. This can be done in three fronts, 1) improvements in sub-problem
solving, 2) improvements in sub-problem identification, and 3) computing additional heuristics to
guide the selection of algorithms.

From a sub-problem solving perspective, this can still be extended to using genetic algorithms or
swarm techniques on a small number of points, where convergence happens quickly, or using other
heuristic-based approaches such as the Christofides or other algorithms. The next step is to optimize
the connection of sub-problems to one another, as this problem is another instance of the TSP.

Looking at improvements in sub-problem identification, alternative methods of decomposing our
point-space into sub-problems exist, such as using k-means clustering. Other works uses this as
means of decomposing the point space, so a logical step would be to compare the WSPD to these
methods. Alternatively, one could potentially use the geometric decomposition of points to guide
better centers for k-means.

Finally, work can be done on using WSPD or other heuristics to guide the choice of our approxima-
tion algorithm. There are certainly applications of WSPD in pruning or scoping the problem space,
but other global heuristics may be useful in our approximation selection. One thing to look at could
be a notion of balance between subgroups, and know that one may need to further subdivide a group
using a different method or separation factor to result in more manageable sub-problems.

7 Conclusion

Well-separated pairs offer strong geometric insights and clearly has potential in geometric problems
such as the travelling salesman problem. Particularly, this offers a logical subdivision of points that
allows us to work on a smaller problem space using potentially expensive algorithms. We find that
using WSP to divide our points into geometric sub-problems yields mixed results on the TSP when
using the nearest neighbor heuristic. Using other approximate solutions to solve sub-problems may
yield additional optimizations. This work further motivates research into exploring heuristics of our
data beyond its WSPD to guide the use of existing algorithms, such as distributional information or
alternative decompositions of points. Overall, we find that the geometry of points do indeed play a
big role in approaches to solving the TSP.
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